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The earlier proposed general approach for description of the non-ideal mixer is coupled with cor­
responding boundary conditions for the closed system. Some simplifications in this procedure 
result in relations which are in agreement with experimental data. 

In the last study1 a unidimensional stochastic model if nonideal mixer has been 
proposed. On basis of the assumption on random motion of the indicating particle 
it is possible to describe by this model propagation of scalar quantities (temperature 
or concentration) in the mixer at turbulent liquid flow. In other studies this general 
approach has been applied both to the batch2 and f1ow 3 mixer. But in both these cases 
has been considered the so-called "open" mixer i.e. additional conditions on its 
boundaries have not been taken into consideration. In this study an attempt is made 
to solve some problems which are related with introduction of boundary conditions. 

THEORETICAL 

GENERAL RELATIONS 

Similarly as in the last studies 1- 3 the indicating particle is considered, situated in the 
moment t = 0 in the mixer, depicted schematically in Fig. 1. As can be seen from this 
figure the oriented unidimensional coordinate system with the axis x is chosen where 
the perpendicular projection of indicating particle motion on this axis is considered. 
It has been demonstrated 1 that in the case when the effect of molecular diffusion can 
be neglected it is possible to describe the random motion of the indicating particle 
in the mixer by use of stochastic differential equations4 

dV(t) = g[X(t), Vet), tJ dt + h[X(t), Vet), tJ dW(t) (1) 
and 

dX(t) = Vet) dt , (2) 

* Part LX in the series Studies on Mixing; Part LIX: This Journal 48, 568 (1983). 
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where X(t) denotes projection of position of the particle and Vet) is projection of 
the particle velocity in time t on the axis x and Wet) is the Wiener process. The first 
right hand side term of Eq. (1) is characterising the intensity of non-random, second 
term of random forces acting on the particle. It has been demonstrated1 •4 that to 
stochastic differential Eqs (1) and (2) corresponds the Kolmogorov diffusion equa­
tion 

of Cf u 1 02 

-:;- + v - + - [g(x, v, t)J] - -- - [h 2(x, v, t)J] = 0, 
ot ex uv 20v2 

(3) 

where 

(4) 

is probability density of the random process, which means that in the moment t the 
particle will be located in the space interval <x, x + dx) and that its velocity Vet) 
will be from the interval of velocities <v, v + dv). The symbolj'(.) denotes transitive 
probability density characterising the condition that in the moment t = 0 the particle 
is located in the point with the coordinate XO and that it has the velocity equal to vO. 

Probability density f°(.) gives the initial distribution of position and velocity of 
particle and is thus the initial condition of solution of Eq. (3). The function f(.) is 
thus the probability density of the random vector, who~e components X(t) and Vet) 
are defined by Eqs (1) and (2) and by the initial distributionf°('). 

Let us discuss the bour:dary conditions of Eq. (3). As concerns classification of 
partial differential equations relation (3) is the equation of parabolic type with two 
"spacial" coordinates. One of these coordinates v has a physical meaning of velocity 
and it is possible to consi'der that the function f(.) is defined for all values v from the 
interval ( - 00, + 00) while it is considered that this function and its first derivative 
converge toward zero at the rise of the absolute value of velocity v beyond all limits, 
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Motion of fluid particle in the mixed charge 
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i.e. that there holds 

lim lex, v, t) = lim i lex, v, t) = o. 
Ivl .... oo Ivl .... oo ov (5) 

The "actual" spacial coordinate x is in Eq. (3) only a single one, and according to the 
earlier made considerations, the projection of particle motion on the x axis is studied 
only (particle motion in the unidimensional space). It is obvious from Fig. 1 that 
in points x = 0 and x = L the function /(.) must in general satisfy certain boundary 
conditions. . 

General solution of the problem of boundary conditions is even in the case of uni-
dimensional diffusion very complex; it depends also on the form of coefficients of 
diffusion equationS. In the here considered two dimensional case the situation is even 
more complex. In the next part it is considered that the boundary of the system in 
points x = 0 and x = Lcan be considered as regular in the sense of the Feller termi­
nologys. In such a case there exist two basic types of "behaviour" of the particle 
on the boundary of the system: absorption and reflection. The corresponding bound­
ary conditions can be written, for equation of the type (3), for the absorbing bound­
ary, by relations6 

lim lex, v; t) = lim lex, v; t) = 0 (6) 
xlO xtL 

and for the reflecting boundary in the form 

lim/ex, v; t) = lim/ex, -v; t) } 
xlO xlO 

lim/ex, v; t) = lim/ex, -v; t). 
xfL xtL 

(7) 

The boundary conditions of the type (6) are of significance e.g. for mass transfer 
across the interface. In the next considerations, related to the closed mixer it is always 
assumed that both boundaries of the system are only refecting and that there does 
not take place sticking of particles in the walls of the mixer. 

There remains to solve the question of relation of boundary conditions (6) and (7) 
and random functions X(t) and Vet). Let us write at first the marginal probability 
density 

f+CO 

fix; t) = -00 I(x, v; t) dv (8) 

which is obviously characterising distribution of position X(t) of the particle at any 
value of its velocity. Moreover it is possible to define the conditional probability 
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density 

Ivlx(v I x; t) = I(x, v; t)/Ix(x; t) (9) 

which is characterising velocity distribution of particle which is in the moment t 
located in the point with coordinate x. This "conditional" velocity is thus a function 
of two arguments and it is formally denoted by the symbol Vet I x). 

Boundary conditions of the type (6) then express the fact that the particle can move 
in the spacial interval (0, L) only so long ti1I it does not touche some of the boundaries, 
i.e. there holds or 

X(t) = 0 [t > 1'0] (10) 
or 

where 1'0' or 1'L is the time of first passage of particle through boundary in the point 
x = 0 or x = L. 

On the reflecting boundary of the system on the contrary the condition holds 

lim Vet I x) = lim [ - Vet I x)] , (11) 
x~O x!O 
I!t I! t 

or 

lim Vet I x) = lim [ - Vet I x)] (12) 
xfL xfL 
I!t qt 

which is expressing the fact that the particle is on the corresponding considered bound­
ary in the moment l' elastically reflected and returns back into the interval (0, L). 

The general unidimensional model with so defined boundary conditions will be 
now applied to the simpler concrete case for which it is possible to find the explicite 
resulting relations. 

MODEL OF PARTICLE MOTION 

In the recent studies2 •3 it has been demonstrated that useful results very often 
they can be solved even by analytical methods - might be obtained at relatively 
simple assumptions. It has been considered that forces which act on the fluid particle 
and which are described by coefficients g(.) and h(.) in Eq. (1) are at most linear func­
tions of variables x and v. Similar procedure is used also in this case. 

Similarly as in the earlier study2 is here considered a homogeneous liquid situated 
in a cylindrical vessel (Fig. 1). The x axis of the earlier selected unidimensional coordi­
nate system is identical·) with the axis of cylindrical symmetry of the vessel and as its 

• In Fig. 1 the axis x is drawn outside the mixer for clearness. 
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origin is chosen the point in which the liquid surface is intersected by this axis. 
In the axis of cylindrical symmetry of the vessel is located a rotary impeller which is 
causing an axial flow of the batch so that the plane of horizontal symmetry of the 
impeller rotor is cutting the axis x in the point X m • In the moment t = 0 a solution of 
negligible volume containing the indicating compound is injected on the surface of 
the stationary mixed liquid. Particles - molecules - of the indicating compound 
have the same density as the liquid and move randomly inside the vessel. 

As has been already stated an attempt is made here to describe only the vertical 
component of particle motion while other simplifications are made: it is assumed that 
after injection of the indicating compound on the surface of the batch in the vessel 
the particles will move mostly at first in the descending stream and after reaching 
the bottom of the vessel they will be situated in the ascending stream. After reaching 
the surface the particles will be again situated in the descending stream. The described 
procedure is continuously repeated. 

Further assumptions concerning the forces acting on the particle in the mixed 
charge are introduced: 

1) By mutual action of the rotating impeller and walls of the vessel a nonrandom 
force originates, whose magnitude is constant in the whole volume of the charge and 
differs only as concerns the direction of the descending and ascending streams of the 
batch; 

2) nonrandom friction force directly proportional to particle velocity and oriented 
against the direction of its motion; 

3) Random force proportional to the Wiener process. Proportionality coefficients 
are constant for the given mixing conditions. On basis of these assumptions it is 
possible to write Eq. (1) in the form 

dV(t) = [±b - txV(t)]dt + cdW(t). (13) 

This equation does not include X(t) and it is thus possible to find independently the 
distribution function or probability density fv(v; t) of velocity of the indicating par­
ticle. The Kolmogorov equation 1 holds 

(14) 

where P = bjtx and e = cj.j(2tx). Relations (13) ,(14) and others are formal registra­
tion of always two independent equations in which is always the upper index related 
to the descending and lower to ascending streams of the charge. 

As has been already st.ated, liquid motion in the mixer is quasistationary and the 
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initial volume of the solution of the indicating compound is negligible in comparison 
to the volume of the charge. It is thus possible to assume with sufficient accuracy 
that the velocity of particles will be from the beginning of the operation a stationary 
random function with the probability density 

(15) 

Here f3 is the expected mean velocity of indicating particles and 82 variance of their 
velocities around this mean value. 

With regard to Eqs (1) to (3) and (14) it is finally possible to write the Kolmogorov's 
equation for the probability density characterising distribution of the vertical pro­
jection of position and of particle velocity in the descending and ascending liquid 
streams by relation 

(16) 

For this differential equation the initial conditions holds 

(17) 

which is expressing the fact that in the initial moment all indicating particles are 
on the surface of the liquid and distribution of their velocities is given by Eq. (15). 

It is possible to demonstrate that particular solution of Eqs (16) with the given 
initial condition is the two-dimensional normal distribution in the form (see Appendix) 

(18) 

whose parameters are given by relations 

± f3t + 2nL, (19) 

IIxv = 8 2 [1 - exp (-at)](a , 

Ilxx = 28 2 [at - 1 + exp (-at)]/a 2 • 
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Symbol n is an arbitrary integer and gives the number of reflections of the indicating 
particle on boundaries of the closed interval (0, L). The quantity n can become also 
negative which denotes the fact that individual particles car. tvt:n move "against" 
the direction of flow of the liquid stream. 

Let us define the "overall" probability density f(x, v; t) so that the symbolf(x, v; t) . 
. dx dv denotes such probability that the particle is located within the interval (x, 
x + dx) either in the descending or ascending stream of the charge and that it has 
a velocity from the interval (v, v + dv) so that the relation holds 

+00 

f(x, v; t) = L [In+(x, v; t) + fn-(x, v; t)] . (20) 
n= - 00 

It is necessary to realise that only sums Ifn+ and Ifn- are the solution of each of 
equations (16) considered individually; the alone function f(x, v; t) does not satisfy 
these equations. But it is easy to prove that it suits the boundary conditions (7) on 
both ends of the interval, i.e. that it is expressing the fact that in the moment of 
reflection the particle is situated practically simultaneously both in the ascending and 
descending streams of the charge. More accurately this concerns convergence of the 
just discussed summations from left and right on the time axis to this moment as is 
indicated in Eqs (11). It is obvious that the sums Ifn+ and Ifn- then describe the si­
tuation separately in the descending and ascending streams of the charge. So is the 
problem in general form solved. 

Earlier l it has been demonstrated that the marginal probability density f.(.) defined 
by relation (8) is proportional to the expected value of concentration of indicating 
particles in unidimensional space. Proportionality coefficient is for simplicity con­
sidered as equal to one and after integration of Eq. (20) indicated in Eq. (8) the 
relation is obtained 

+00 

E[Q(x, t)] = L 1/.j(2nhxx)exp [-(x - x;Y/2hxx] + 
n= - 00 

+00 

+ L 1/.j(2nhxx) exp [ -(x - x;;"y/2hxx] . (21) 
n= - co 

This function is on basis of the earlier made considerations l expressing the mean 
value of concentration of indicating particles in differential volume of the charge 
between horizontal planes which intersect coordinate axis in points x and x + dx. 
Mean concentration in the descending stream is then expressed by first sum, in the 
ascending by the second sum. 

It is known that these sums converge fast for small values of variance hxx. For 
large values it is better to use the equivalent relation 7 

00 

E[Q(x, t)] = (l/L) [1 + 2 L exp (-n 2n2hxx/L2) cos (n nx/L) cos (n npt/L)]. (22) 
n=l 

Collection Czechoslovak Chern. Commun. [Vol. 491 11984] 



---~---~--~--~---

Studies on Mixing 497 

From it with regard to the last one of the system of Eqs (19) it is immediately obvious 
that in very long time after adding of indicating particles their perfect homogenisation 
in the whole volume of the charge takes place. 

In the same study! has been defined also the relation for variance of concentration 
of indicating particles which will be looked for as the sum of variances in the descen­
ding and ascending streams of the charge 

Var [Q(x, t)] = E[Q2(X, t)] - E2[Q(X, t)] = 

where functions Iv±(.) are defined by relations (15) and the conditional probability 
density Inx'v is given by relation 

(24) 

After substitution from relations (15), (18) and (24) into Eq. (23) and after integration 
an explicit relation for variance of concentration of indicating particles is obtained 
in the form 

- -- exp - + L L ..., 1 [(x - X:)2 + (x - x~YJ} +00 +00 { } 

27th xx 2hxx n= - 00 m= - 00 

(25) 

where the symbol in the second brace denotes the same term as in the first one, with 
the difference that symbols x: and x~ are interchanged by symbols with negative 
sign. The symbol r denotes correlation coefficient between the position and velocity 
of particle ~nd is defined by relation 

r = hxv/(hxxhvv)1/2 = (1 - exp (-ctt))/.J2[ctt - 1 + exp (_ctt)]1 /2 (26) 

with regard to the last three equations of the system (19). 
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From Eqs (25) and (26) results that for large times t converges the fourth power 
of the correlation coefficient faster than the variance h xx' The value of the first term 
in the brace of Eq. (25) then converges to the value of the second term so that there 
results that the variance of concentrations converge to zero. This fact is strengthening 
the remark made behind Eq. (22) in the respect that after sufficiently long time con­
centration of indicating particles in the charge will reach a constant value. Eqs (21) 
or (22) and (25) thus qualitatively correctly describe homogenisation of indicating 
compound in the mixed charge with time. Thus an attempt has been made for their 
experimental verification. 

EXPERIMENTAL 

Experiments were performed in the unit described earlier2. Electrolytic conductivity of the charge 
has been measured after adding about 3 ml of concentrated solution of sodium chloride on its 
surface. The measuring prove was formed (Fig. 2) by four platinum wires stretched on the skeleton 
made from isolating material so that they formed vertical edges of the hypothetic cube with volume 
about 4 cm3 . This probe has been situated in the half of vertical height of the charge and on the 
radius which was cutting in half the angle between two neighbouring radial baffles. Radial distance 
of the center probe from the vessel axis has been equal to 2/3 of its radius. This position of the pro-
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FIG. 2 

Probe for measurement of electrolytic con­
ductivity of solution 1 Pt wires connected 
with the positive pole of power supply, 
- 1 Pt wires connected with negative pole 
of power supply, 2 upper arm of the probe, 
3 lower arm of the probe, -4 spacer,S pipe 
for fixing the probe and insulation of wires 

--- -------------
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be should have enabled simultaneous measurement of concentration in the ascending and des­
cending streams of the charge. 

A six blade turbine with ratio of impeller diameter to the vessel diameter equal to 1/4 and 1/3 
has betn used. Distance of the impeller rotor from the vessel bottom was equal to 1/3 of the charge 
height. Rotational speed of the impeller has been varied within the range from 1'67 to 8'33 s -1. 

Similarly as in the last study2 always 20 parallel measurements under the same experimental con­
ditions were performed. From so Obtained experimental data the mean value and variance of 
dimensionless concentration as time sequences were calculated. Dimensionless concentration 
has been given by relation 

(27) 

while as Q(x, 00) has been chosen the final concentration i.e. such value which in continuing expe­
riment remained constant. The vertical coordinate of the probe center Xc (Fig. 1) was equal to L/2. 
Mean value and variance of dimensionless concentration Z(xc' t) in time t were calculated ac­
cording to relations 

1 n 

Z(Lj2, t) = - L Zi(Lj2, t) , } 

S'(L/2, t) n ';' i: [Zi(L/2, t) _ Z'(L/2, t)l ' 
n - 1 i=1 

(28) 

index i denotes No of experiment in series of n measurements under identical conditions. Quanti­
ties Z(L/2, t) were used for determination of parametes of the model. 

Before calculation of parameters of Eqs (21), (22) and (25) these relations were rearranged 
into dimensionless form; Eqs (21) and (22) were multiplied by a constant L, Eq. (25) was multi­
plied by L 2 • Dimensionless parameters e, (} and r and dimensionless time () were introduced 

~ = xjL, (! = pjrxL, y = f,2jrx2L2 , 

() = rxt . (29) 

From so arranged relations then the values of parameters IX, (} and r were determined by t\:le 
method of nonlinear regression both from experimentally determined time dependences of mean 
dimensionless concentration and from variance of this concentration. Parameter .; has all ways 
reached a constant value'; = 0·5 (corresponds to location of the probe in the half of the charge­
height, see Fig. 1). For calculation the Marquart8 optimisation procedure was used. The needed 
partial derivatives of dimensionless forms of Eqs (21) and (22) were determined numerically. 

With regard to the fact that in calculations by use of Eqs (21), (22) and (25) it is necessary to 
calculate sums of infinite series we have studied practically the rate of convergence of these sums 
to limiting values. The values of parameters IX, (! and r were chosen in a wide range (for'; = 0'5) 
and for different number of terms of series their sums were evaluated. It has been found that con­
vergence of these partial sums is very fast (it has not been necessary to use in calculation the alter­
native relation (22»; practically suffices to obtain a sufficiently accurate sum of 10 to 20 terms 
of the series both for positive and negative values of the summation index. At regression calcula­
tion of estimates of parameters IX, (} and r were chosen the summation limits so that the required 
accuracy of computation is met. 
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RESULTS 

Experimental results (time series) were arranged into sets, whose individual terms 
differ only by rotational speed of impeller. Initial estimates of parameters IX, (! and y 
necessary for nonlinear regression were determined by trial and error for the first 
term of the set and for other terms as initial estimates were taken results of preceeding 
calculation. The results of calculations were thus values of parameters ac, (! and y in 
dependence on the rotational speed of the impeller at the given configuration of the 
mixed system. 

It results from theoretical part and discussion of this paper that the value of para­
meter IX should be independent of rotational speed of the impeller. Estimates of 
parameter IX obtained by the above described calculations practically corresponded 
to this conclusion but their values fluctuated randomly around some constant mean 
value. Deviations were obviously due to strong correlation among pairs of parameters 
IX - (! and IX - y, thus the calculation of parameter estimates (! and y were repeated 
with the constant value of parameter IX (equal to the given mean value). So were 
obtained the corrected values of parameters (! and y while their dependence on rota­
tional speed of impeller is given in Fig. 3. By comparison of sums of square deviations 
for both calculation variants it has been found that the experimental and calculated 
dimensionless concentrations of indicating particles are practically identical in both 
these cases. 

In Fig. 4 the example is given of time dependence of dimensionless concentration 
Z(Lj2, t) where are the experimentally determined values compared with results 
of both these variants of calculation. In Fig. 5 is demonstrated the time dependence 
of variance of this concentration calculated according to Eq. (25), where for the cal­
culation of variance were used parameters ex, (! and y calculated from the change in 
concentration according to the second method of calculation. 

. DISCUSSION 

By the earlier described procedure2 it has been tested how suitably is the model de­
scribing changes in the infinitely long spacial interval and it has been found that with 
a sufficient accuracy (according to criteria quoted in the mentioned study2) it describes 
experimental data. Comparison of sum of square of deviations in both these cases 
enables to judge that the three parameter model, derived in this study (the fourth 
parameter was in all studied experimental series a constant) describes the experi­
mentally obtained concentration dependence better than the earlier derived four 
parameter model2 • A good agreement of experiments with theoretical concentration 
dependence can be also seen from the example given in Fig. 4. 

Model derived in this study enables even (in some cases at least qualitatively) to 
express the dependence of variance of concentration on time as in obvious from 
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Dependence of parameters (1 and y on rota­
tional speed of impeller. --- 0 (1, ----­

e y turbine d = 100 mm, vessel with heating 
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Fxperimentally determined variance of con­
centration in comparison with the one cal­
culated according to the model. • experi­
mental values, --- dependence according 
to the model Eq. (23) into which were substi­
tuted parameters calculated by nonlinear 
regression from Eq. (21) 
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FIG. 4 

Experimentally determined mean dimension­
less concentration in comparison with the 
calculated one by use of the model. • experi­
mental values, --- variable IX, ----­

constant IX, • -. -. -. limits of 95% reliability 
interval 

1 , 

10 

FIG. 6 

Dependence between dimensionless concen­
tration of indicating compound and dimen­
sionless linear coordinate in dependence on 
time interval t from the moment of injection 
of the indicating compound on surface of 
the charge; 1 t = Is, 2 t = 2s, 3 t = 3s, 
4 t = 5s, 5 t = lOs 
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Fig. 5. The agreement of experimental data and theoretical dependence can be con­
sidered in this case as very good when it is realised that for their calculation were 
used parameters calculated by use of relation (21). This fact also confirms that the 
proposed model is suitable. 

As has been already given in the theoretical part, the model has described correctly 
equality of concentrations of the indicating compound in time and space of the batch. 
This fact is demonstrated in Fig. 6, where is depicted distribution of dimensionless 
concentration in dependence on dimensionless spacial coordinate ~ for the found 
pair of parameters {! and y. The parameter of curves in the figure is the time interval t 
elapsed from the moment of addition of the indicating compound. 

Physical significance of parameters of the model can be considered on basis of 
Eqs (13) abd (14), or from assumptions which determine coefficients of these equa­
tions. From these considerations and also from considerations made earlier3 results 
that the parameter (X represents the coefficient of laminar friction and should be 
first of all a function of fluid properties. Rotational speed should not affect this 
quantity. Experimental results do not exactly confirm this conclusion, but in the region 
of turbulent flow there does not exist a significant trend between rotational speed of 
impeller and this parameter. As has been already stated, the mean value of this para­
meter has been calculated for one geometrical arrangement. From Fig. 4 is obvious 
that the difference between the optimal value of parameter (X (calculated by the method 
of nonlinear regression) and average value has a little effect on calculated dependence 
of concentration on time. (The minimum sum of square deviations in the phase 
space of parameters is perhaps flat, with respect to (X). 

From Eqs (14) or (15) is obvious that the parameter f3 is the mean velocity of 
convective stream of indicating particles and thus also of liquid velocity which is 
carrying these particles. It is possible to expect that with increasing rotational speed 
of impeller this velocity will increase. From the second equation (29) there results 
that also the dimensionless velocity {! increases with increasing speed of mixer rotation. 

As has been found earlier1 ,3, the parameter 8 2 in Eq. (14) or the dimensionless 
parameter y, defined by the third of relations (25) can be considered to be the dimen­
sional or dimensionless turbulent diffusivity. As intensity of turbulence increase with 
increasing speed of rotation it is possible to expect also the increase in value of 
parameter y with this operating condition. As is obvious from Fig. 3 both these 
conclusions were experimentally verified, while the rise in parameters {! and y is 
roughly linear with the rotational speed of impeller. 

As concerns the boundary conditions (7) for solution of Eqs (16) it is necessary 
to mention that physical sense of these boundary condition is more illustrative and 
simpler than in the usual case of "unidimensional" diffusion described in general by 
relationS 
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ocp(x, t) + ou(x, t) cp(x; t) _ ~ o2a2(x, t) cp(x; t) = 0, 

ot ox 2 ax2 
(30) 

in which cp(x; t) denotes probability density of particle location, u(x, t) drift velocity 
and a2(x, t) diffusion coefficient. Boundary conditions for reflecting boundary of the 
interval always include the relation oa2(x, t) cp(z, t)/ox; while at explanation of their 
physical sense it is necessary to admit that particle hits the boundary with infinitely 
large velocity. Elastic reflection of indicating particle, described by Eqs (11) and (12), 
enables to consider finite velocities and the corresponding distribution of velocities 
is then described by condition (7). It is also worth mentioning that Eq. (21) can be 
also written with regard to the remark made next to Eq. (20), i.e. that there exist 
(also with regard to Eq. (8)) two relations 

(31) 

and 

which are solutions of the "unidimensional" differential equation with diffusion 
coefficient which is a function of time 

(32) 

(compare Eq. (34) in the previous paper3). 

The corresponding boundary conditions are given by relations 

L 13 - - (1 - exp ( - at)) - cp: = +00 [ [;2 a] 
n=-oo a ax 

L -13 - - (1 - exp (-at)) - cp;;, +00 [[;2 0 ] 
n=-oo a ax 

(33) 

for x i 0 or x ! L, which also describe reflection of the indicating particle in point, 
x = 0 and x = L. 

This approach is thus suitable for description of diffusion processes in a limited 
interval. 
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APPENDIX 

Solution of Kolmogorov Equations 

It has been proved 9 that the fundamental wlution of Kolmogorov diffusion equations is a func­
tion proportional to the probability density of the multiple distribution at the assumption that 
coefficients with first derivatives are linear functions of "spatial" variables and coefficients with 
second derivatives are constants. Parame'ers of this function are then function of time and they 
can be found by solution of the system of ordinary differential equations. In the case of Eq. (16) 
they hold for expected values of variables x and t' with dots above letters for time derivatives 

Initial conditions to these relations are determined by Eqs (15) and (17) 

x±(O) = 0 

v±(O) = ±f3. 

Solution of these equations are obviously relations 

±f3t 

For second moments of variables x and v it is possible to write this system as 

hxx - 2h xy = 0 

Initial conditions are again determined by relations (16) and (17) 

By solving this system the last three terms of the system (/9) are obtained. 

(34) 

(35) 

(36) 

(37) 

(38) 

For particular solutionfn± it is necessary to modify the first initial condition (35) so that the 
expected position of the particle in moments t = 2nLj P is equal to zero and in moments (2n + 
+ 1) L/ P is equal to L, here n is the integer. 

The proposed procedure can be applied for stationary solution of Eqs (/4); in last relations (34) 
and (37) zero time derivatives are considered w that relations are obtained v± = ±P; hyy = 82 

which are parameters of Eq. (15). 

The authors like to thank Miss J. Po:,'kllbkoni for carefully peljormed computations. 
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Studies on Mixing 

LIST OF SYMBOLS 

h coefficient in Eq. (13) ms- 2 

(" coefficient in Eq. (11) ms- 3 / 2 

j probability dens;ty 
.II function characterising nonrandom force ms - 2 

II second central moment 
Ii function characterising random force ms - 3/2 
II summation index 
r correlation coefficient 

time s 
{, drift velocity ms - 1 

[' velocity ms - 1 

x coordinate of the point m 
F operator of expected value 

length of mixer m 
() concentration of indicating particles kgm - 3 
S2 variance of dimensionless concentration 
V random particle velocity ms- 1 

Var variance operator 
W Wiener process sl/2 
Y random location of particle m 
7 dimensionless concentration 

Ii 
coefficient in Eq. (/3) s-1 

parameter of Eq. (14), mean velocity of indicating particles ms - t 

parameter of the model defined by Eq. (29) 
() Dirac function 
I: parameter of Eq. (14), variance of velocities of indicating particles ms- 1 

(I' probability density 
¢ dimemionless linear coordinate 
(} parameter of model Eq. (29) 
(72 diffusion coefficient m2 s-1 

, time s 
o dimensionless time 
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