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The earlier proposed general approach for description of the non-ideal mixer is coupled with cor-
responding boundary conditions for the closed system. Some simplifications in this procedure
result in relations which are in agreement with experimental data.

In the last study! a unidimensional stochastic model if nonideal mixer has been
proposed. On basis of the assumption on random motion of the indicating particle
it is possible to describe by this model propagation of scalar quantities (temperature
or concentration) in the mixer at turbulent liquid flow. In other studies this general
approach has been applied both to the batch? and flow® mixer. But in both these cases
has been considered the so-called ,,open” mixer i.e. additional conditions on its
boundaries have not been taken into consideration. In this study an attempt is made
to solve some problems which are related with introduction of boundary conditions.

THEORETICAL

GENERAL RELATIONS

Similarly as in the last studies! ~* the indicating particle is considered, situated in the
moment ¢t = 0 in the mixer, depicted schematically in Fig. 1. As can be seen from this
figure the oriented unidimensional coordinate system with the axis x is chosen where
the perpendicular projection of indicating particle motion on this axis is considered.
It has been demonstrated! that in the case when the effect of molecular diffusion can
be neglected it is possible to describe the random motion of the indicating particle
in the mixer by use of stochastic differential equations*

dv(r) = g[Xx(1), V(1), 1] dt + h[X(1), V(1), 1] dW() (N
and
dX(1) = v(r) de, (2)

* Part LX in the series Studies on Mixing; Part LIX: This Journal 48, 568 (1983).
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Studies on Mixing 491

where X(f) denotes projection of position of the particle and V(f) is projection of
the particle velocity in time ¢ on the axis x and W(1) is the Wiener process. The first
right hand side term of Eq. (1) is characterising the intensity of non-random, second
term of random forces acting on the particle. It has been demonstrated!'# that to
stochastic differential Eqs (1) and (2) corresponds the Kolmcgorov diffusion equa-
tion

1 o2

o + v o + 2 [9(x, v, 0)f] — - < [R*(x,v,0)f] =0, 3
ot ox oo 2 ov?
where
f=f(xv1)= Ji J+” f(x, 0, 1] x% 0°) £O(x°, 0°) dv°® dx° (4)
0OJ—-m

is probability density of the random process, which means that in the moment ¢ the
particle will be located in the space interval {x, x + dx) and that its velocity V(1)
will be from the interval of velocities (v, v + dv). The symbol f'(.) denotes transitive
probability density characterising the condition that in the moment ¢ = 0 the particle
is located in the point with the coordinate x° and that it has the velocity equal to v°.
Probability density f°(.) gives the initial distribution of position and velocity of
particle and is thus the initial condition of solution of Eq. (3). The function f(.) is
thus the probability density of the random vector, whose components X(r) and V(1)
are defined by Eqs (/) and (2) and by the initial distribution f°(.).

Let us discuss the bourdary conditions of Eq. (3). As concerns classification of
partial differential equations relation (3) is the equation cf parabolic type with two
..spacial” coordinates. One of these coordinates v has a physical meaning of velocity
and it is possible to consider that the function f(.) is defined for all values v from the
interval (— oo, + oc) while it is considered that this function and its first derivative
converge toward zero at the rise of the absolute value of velocity v beyond all limits,
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i.e. that there holds

lim f(x,v,1) = lim aif(x, v,1)=0. (%)
v

Iv[=w Iv]= o

The “actual” spacial coordinate x is in Eq. (3) only a single one, and according to the
earlier made considerations, the projection of particle motion on the x axis is studied
only (particle motion in the unidimensional space). It is obvious from Fig. 1 that
in points x = 0 and x = Lthe function f(.) must in general satisfy certain boundary
conditions.

General solution of the problem of boundary conditions is even in the case of uni-
dimensional diffusion very complex; it depends also on the form of coefficients of
diffusion equation®. In the here considered two dimensional case the situation is even
more complex. In the next part it is considered that the boundary of the system in
points x = 0 and x = Lcan be considered as regular in the sense of the Feller termi-
nology®. In such a case there exist two basic types of “behaviour” of the particle
on the boundary of the system: absorption and reflection. The corresponding bound-
ary conditions can be written, for equation of the type (3), for the absorbing bound-
ary, by relations®

lim f(x, v; t) = lim f(x, v; £) = 0 (6)
xl0 xtL
and for the reflecting boundary in the form

lim f(x, v; 1) = lim f(x, —v; )
x}0 x}0

)

lim f(x, v; ) = lim f(x, —v; 7).
xtL xtL

The boundary conditions of the type (6) are of significance e.g. for mass transfer
across the interface. In the next considerations, related to the closed mixer it is always
assumed that both boundaries of the system are only refecting and that there does
not take place sticking of particles in the walls of the mixer.

There remains to solve the question of relation of boundary conditions (6) and (7)
and random functions X(f) and V(r). Let us write at first the marginal probability
density

fulx; 1) = Jtm f(x,v; 1) dv (8)

which is obviously characterising distribution of position X(¢) of the particle at any
value of its velocity. Moreover it is possible to define the conditional probability
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density

Ll ] x5 0) = f(x, 03 )[fy(x; 1) ©¥)

which is characterising velocity distribution of particle which is in the moment ¢
located in the point with coordinate x. This ,,conditional” velocity is thus a function
of two arguments and it is formally denoted by the symbol V(¢ | x).

Boundary conditions of the type (6) then express the fact that the particle can move
in the spacial interval (0, L) only so long till it does not touche some of the boundaries,
i.e. there holds or

X()=0 [t> 1] (10
or
X(t)=L [t>1],

where 7, or 7 is the time of first passage of particle through boundary in the point
x =0o0rx=0L.
On the reflecting boundary of the system on the contrary the condition holds

lim V(¢ | x) = lim [- V(¢ | x)], (11)
x|0 x|0
tlt tlt

or
lim V(1| x) = lim [— V(1| x)] (12)
e ue

which is expressing the fact that the particle is on the corresponding considered bound-
ary in the moment 7 elastically reflected and returns back into the interval (0, L).

The general unidimensional model with so defined boundary conditions will be
now applied to the simpler concrete case for which it is possible to find the explicite
resulting relations.

MODEL OF PARTICLE MOTION

In the recent studies®'® it has been demonstrated that useful results — very often
they can be solved even by analytical methods — might be obtained at relatively
simple assumptions. It has been considered that forces which act on the fluid particle
and which are described by coefficients g(.) and h(.) in Eq. () are at most linear func-
tions of variables x and v. Similar procedure is used also in this case.

Similarly as in the earlier study? is here considered a homogeneous liquid situated
in a cylindrical vessel (Fig. 1). The x axis of the earlier selected unidimensional coordi-
nate system is identical*) with the axis of cylindrical symmetry of the vessel and as its

* In Fig. 1 the axis x is drawn outside the mixer for clearness.
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origin is chosen the point in which the liquid surface is intersected by this axis.
In the axis of cylindrical symmetry of the vessel is located a rotary impeller which is
causing an axial flow of the batch so that the plane of horizontal symmetry of the
impeller rotor is cutting the axis x in the point x,,,. In the moment ¢ = 0 a solution of
negligible volume containing the indicating compound is injected on the surface of
the stationary mixed liquid. Particles — molecules — of the indicating compound
have the same density as the liquid and move randomly inside the vessel.

As has been already stated an attempt is made here to describe only the vertical
component of particle motion while other simplifications are made: it is assumed that
after injection of the indicating compound on the surface of the batch in the vessel
the particles will move mostly at first in the descending stream and after reaching
the bottom of the vessel they will be situated in the ascending stream. After reaching
the surface the particles will be again situated in the descending stream. The described
procedure is continuously repeated.

Further assumptions concerning the forces acting on the particle in the mixed
charge are introduced:

1) By mutual action of the rotating impeller and walls of the vessel a nonrandom
force originates, whose magnitude is constant in the whole volume of the charge and
differs only as concerns the direction of the descending and ascending streams of the
batch;

2) nonrandom friction force directly proportional to particle velocity and oriented
against the direction of its motion;

3) Random force proportional to the Wiener process. Proportionality coefficients
are constant for the given mixing conditions. On basis of these assumptions it is
possible to write Eq. (I) in the form

dv(t) = [£b — aV ()] dt + cdW(r). (13)

This equation does not include X(r) and it is thus possible to find independently the
distribution function or probability density f,(v; ¢) of velocity of the indicating par-
ticle. The Kolmogorov equation® holds

U oy L i(aB— o) 2] — a2 I
o +aau[(-_i-[3 ) fi] — e 602—0, (14)

where § = b/a and ¢ = ¢[\/(2x). Relations (13) ,(14) and others are formal registra-
tion of always two independent equations in which is always the upper index related
to the descending and lower to ascending streams of the charge.

As has been already stated, liquid motion in the mixer is quasistationary and the
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initial volume of the solution of the indicating compound is negligible in comparison
to the volume of the charge. It is thus possible to assume with sufficient accuracy
that the velocity of particles will be from the beginning of the operation a stationary
random function with the probability density

1

J2me

Here f is the expected mean velocity of indicating particles and &? variance of their
velocities around this mean value.

S5 1) = 5 (v) = exp {—[(v £+ B)*[2]} . (15)

With regard to Eqs (1) to (3) and (14) it is finally possible to write the Kolmogorov’s
equation for the probability density characterising distribution of the vertical pro-
jection of position and of particle velocity in the descending and ascending liquid
streams by relation

af* af* g " 2 O fF
2o o —[(£B - v)fE] — ae =0. 16
ot 0x ov (5 )17 ov? (16)
For this differential equation the initial conditions holds
SO, 1) = 3(x7) £(0°) (17)

which is expressing the fact that in the initial moment all indicating particles are
on the surface of the liquid and distribution of their velocities is given by Eq. (15).

It is possible to demonstrate that particular solution of Egs (16) with the given
initial condition is the two-dimensional normal distribution in the form (see Appendix)

fiE(x, v 8) = (1)21 [hyihy, — h2]Y3). (18)
cexp {—[h(x — xF)? = 2hy(x — xF) (v = v%) + hu(v — vE)?]/2(hhy, — B2},

whose parameters are given by relations

x¥ = 4+ Bt F 2nL, (19)
vt =+ 8,
hVV = 82 b

~
=

w = e[l = exp(—at)]ja,
o = 26%[at — 1 + exp (—at)]/a®.

=
Il
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Symbol n is an arbitrary integer and gives the number of reflections of the indicating
particle on boundaries of the closed interval <0, LY. The quantity n can become also
negative which denotes the fact that individual particles car. even move ‘‘against”
the direction of flow of the liquid stream.

Let us define the “overall” probability density f(x, v; t) so that the symbol f(x, v; f).
. dx dv denotes such probability that the particle is located within the interval {x,
x + dx) either in the descending or ascending stream of the charge and that it has
a velocity from the interval (v, v + dv) so that the relation holds

+
fo0) =Y [ff(x00) + f7(x, 05 0)] (20)
n=—oo

It is necessary to realise that only sums ) f,* and ) f,; are the solution of each of
equations (16) considered individually; the alone function f(x, v; f) does not satisfy
these equations. But it is easy to prove that it suits the boundary conditions (7) on
both ends of the interval, i.e. that it is expressing the fact that in the moment of
reflection the particle is situated practically simultaneously both in the ascending and
descending streams of the charge. More accurately this concerns convergence of the
just discussed summations from left and right on the time axis to this moment as is
indicated in Egs (11). It is obvious that the sums ) f," and ) f,~ then describe the si-
tuation separately in the descending and ascending streams of the charge. So is the
problem in general form solved.

Earlier' it has been demonstrated that the marginal probability density f,(.) defined
by relation (8) is proportional to the expected value of concentration of indicating
particles in unidimensional space. Proportionality coefficient is for simplicity con-
sidered as equal to one and after integration of Eq. (20) indicated in Eq. (8) the

relation is obtained
+ o0

E[Q(x, 1)] = Zwl/\/(21th“) exp [—(x — x7)?[2h,,] +

+ 3 ANrh) exp [~(x = 5 2] (21)

This function is on basis of the earlier made considerations! expressing the mean
value of concentration of indicating particles in differential volume of the charge
between horizontal planes which intersect coordinate axis in points x and x + dx.
Mean concentration in the descending stream is then expressed by first sum, in the
ascending by the second sum.

It is known that these sums converge fast for small values of variance h,,. For
large values it is better to use the equivalent relation’

E[Q(x,0)] = (1/L)[1 + 2n§lexp (—n?*n2h,,[1?) cos (n nx|L) cos (n nBt/L)] . (22)
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From it with regard to the last one of the system of Eqs (19) it is immediately obvious
that in very long time after adding of indicating particles their perfect homogenisation
in the whole volume of the charge takes place.

In the same study’ has been defined also the relation for variance of concentration
of indicating particles which will te looked for as the sum of variances in the descen-
ding and ascending streams of the charge

Var [Q(x, )] = E[Q*(x, )] — E*[Q(x, 1)] =
= f Zoo [ . nt]vfntx]vffdu _J wfnt[va*-dvj‘ GE>fn<1’-x|v\fv‘*-dv:| +

n=-—0o m=— o -0

D W I S =N I o I

where functions f,*(.) are defined by relations (15) and the conditional probability
density f,,-, is given by relation

Fax [ o3 1) = £ (x, 03 0)[fF(v) . (24)

After substitution from relations (15), (18) and (24) into Eq. (23) and after integration
an explicit relation for variance of concentration of indicating particles is obtained

in the form

Var[o(x. gl = ¥ T o

n=-—0 m=-—o 21Thxx\/(1 - 7‘4)'

e [_ (x — XV + (x = x2P = 2°2(x — x7) (x — x,:)] ~

2h,,(1 = 1)
S o [_ (x - x:)ZZ;:L“(x - x;)z]} + n:z:) miw {} (25)

where the symbol in the second brace denotes the same term as in the first one, with
the difference that symbols x) and x are interchanged by symbols with negative
sign. The symbol r denotes correlation coefficient between the position and velccity
of particle and is defined by relation

r = hy/(hhy)'"? = (1 — exp (—at))//2[at — 1 + exp (—at)]'/? (26)

with regard to the last three equations of the system (19).
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From Egs (25) and (26) results that for large times  converges the fourth power
of the correlation coefficient faster than the variance h,,. The value of the first term
in the brace of Eq. (25) then converges to the value of the second term so that there
results that the variance of concentrations converge to zero. This fact is strengthening
the remark made behind Eq. (22) in the respect that after sufficiently long time con-
centration of indicating particles in the charge will reach a constant value. Eqs (21)
or (22) and (25) thus qualitatively correctly describe homogenisation of indicating
compound in the mixed charge with time. Thus an attempt has been made for their
experimental verification.

EXPERIMENTAL

Experiments were performed in the unit described earlier?. Electrolytic conductivity of the charge
has been measured after adding about 3 ml of concentrated solution of sodium chloride on its
surface. The measuring prove was formed (Fig. 2) by four platinum wires stretched on the skeleton
made from isolating material so that they formed vertical edges of the hypothetic cube with volume
about 4 cm3. This probe has been situated in the half of vertical height of the charge and on the
radius which was cutting in half the angle between two neighbouring radial baffles. Radial distance
of the center probe from the vessel axis has been equal to 2/3 of its radius. This position of the pro-
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Probe for measurement of clectrolytic con-
ductivity of solution 1 Pt wires connected
with the positive pole of power supply,
— 1 Pt wires connected with negative pole
of power supply, 2 upper arm of the probe,
3 lower arm of the probe, 4 spacer, 5 pipe
for fixing the probe and insulation of wires
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be should have enabled simultaneous measurement of concentration in the ascending and des-
cending streams of the charge.

A six blade turbine with ratio of impeller diameter to the vessel diameter equal to 1/4 and 1/3
has been used. Distance of the impeller rotor from the vessel bottom was equal to 1/3 of the charge
height. Rotational speed of the impeller has been varied within the range from 1-67 to 8-33 s~ 1.

Similarly as in the last study? always 20 parallel measurements under the same experimental con-
ditions were performed. From so obtained experimental data the mean value and variance of
dimensionless concentration as time sequences were calculated. Dimensionless concentration
has been given by relation

2500 1) = Qxer )]Qxr ) (27)

while as Q(x, o) has been chosen the final concentration i.e. such value which in continuing expe-
riment remained constant. The vertical coordinate of the probe center x, (Fig. 1) was equal to L/ 2.
Mean value and variance of dimensionless concentration Z(x,, t) in time ¢ were calculated ac-
cording to relations

2w =1y z(Lp),

: (28)

L ¥ [z - ZLp, 9]

S*(LJ2, 1)
n—1i=1
index i denotes No of experiment in series of n measurements under identical conditions. Quanti-
ties Z(L/2, t) were used for determination of parametes of the model.

Before calculation of parameters of Eqs (27), (22) and (25) these relations were rearranged
into dimensionless form; Egs (2/) and (22) were multiplied by a constant L, Eq. (25) was multi-
plied by L2. Dimensionless parameters &, ¢ and y and dimensionless time 8 were introduced

x[L, ¢ = BlaL, y = &[d*I?,
0=at. (29)

From so arranged relations then the values of parameters o, ¢ and y were determined by the
method of nonlinear regression both from experimentally determined time dependences of mean
dimensionless concentration and from variance of this concentration. Parameter ¢ has allways
reached a constant value & = 0-5 (corresponds to location of the probe in the half of the charge-
height, see Fig. 1). For calculation the Marquart® optimisation procedure was used. The needed
partial derivatives of dimensionless forms of Eqs (2/) and (22) were determined numerically.

With regard to the fact that in calculations by use of Egs (21), (22) and (25) it is necessary to
calculate sums of infinite series we have studied practically the rate of convergence of these sums
to limiting values. The values of parameters «, ¢ and y were chosen in a wide range (for & = 0-5)
and for different number of terms of series their sums were evaluvated. It has been found that con-
vergence of these partial sums is very fast (it has not been necessary to use in calculation the alter-
native relation (22)); practically suffices to obtain a sufficiently accurate sum of 10 to 20 terms
of the series both for positive and negative values of the summation index. At regression calcula-
tion of estimates of parameters «, ¢ and y were chosen the summation limits so that the required
accuracy of computation is met.
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RESULTS

Experimental results (time series) were arranged into sets, whose individual terms
differ only by rotational speed of impeller. Initial estimates of parameters «, ¢ and y
necessary for nonlinear regression were determined by trial and error for the first
term of the set and for other terms asinitial estimates were taken results of preceeding
calculation. The results of calculations were thus values of parameters a, ¢ and 7 in
dependence on the rotational speed of the impeller at the given configuration of the
mixed system.

It results from theoretical part and discussion of this paper that the value of para-
meter « should be independent of rotational speed of the impeller. Estimates of
parameter a obtained by the above described calculations practically corresponded
to this conclusion but their values fluctuated randomly arcund some constant mean
value. Deviations were obviously due to strong correlation among pairs of parameters
o — ¢ and o — 7y, thus the calculation of parameter estimates ¢ and y were repeated
with the constant value of parameter « (equal to the given mean value). So were
obtained the corrected values of parameters ¢ and y while their dependence on rota-
tional speed of impeller is given in Fig. 3. By comparison of sums of square deviations
for both calculation variants it has been found that the experimental and calculated
dimensionless concentrations of indicating particles are practically identical in both
these cases.

In Fig. 4 the example is given of time dependence of dimensionless concentration
Z(L/2, t) where are the experimentally determined values compared with results
of both these variants of calculation. In Fig. 5 is demonstrated the time dependence
of variance of this concentration calculated according to Eq. (25), where for the cal-
culation of variance were used parameters «, ¢ and y calculated from the change in
concentration according to the second method of calculation.

. DISCUSSION

By the earlier described procedure? it has been tested how suitably is the model de-
scribing changes in the infinitely long spacial interval and it has been found that with
a sufficient accuracy (according to criteria quoted in the mentioned study?) it describes
experimental data. Comparison of sum of square of deviations in both these cases
enables to judge that the three parameter model, derived in this study (the fourth
parameter was in all studied experimental series a constant) describes the experi-
mentally obtained concentration dependence better than the earlier derived four
parameter model®. A good agreement of experiments with theoretical concentration
dependence can be also seen from the example given in Fig. 4.

Model derived in this study enables even (in some cases at least qualitatively) to
express the dependence of variance of concentration on time as in obvious from
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Fig. 5. The agreement of experimental data and theoretical dependence can be con-
sidered in this case as very good when it is realised that for their calculation were
used parameters calculated by use of relation (21). This fact also confirms that the
proposed model is suitable.

As has been already given in the theoretical part, the model has described correctly
equality of concentrations of the indicating compound in time and space of the batch.
This fact is demonstrated in Fig. 6, where is depicted distribution of dimensionless
concentration in dependence on dimensionless spacial coordinate ¢ for the found
pair of parameters ¢ and y. The parameter of curves in the figure is the time interval ¢
elapsed from the moment of addition of the indicating compound.

Physical significance of parameters of the model can be considered on basis of
Eqs (13) abd (14), or from assumptions which determine coefficients of these equa-
tions. From these considerations and also from considerations made earlier® results
that the parameter a represents the coefficient of laminar friction and should be
first of all a function of fluid properties. Rotational speed should not affect this
quantity. Experimental results do not exactly confirm this conclusion, but in the region
of turbulent flow there does not exist a significant trend between rotational speed of
impeller and this parameter. As has been already stated, the mean value of this para-
meter has been calculated for one geometrical arrangement. From Fig. 4 is obvious
that the difference between the optimal value of parameter o (calculated by the method
of nonlinear regression) and average value has a little effect on calculated dependence
of concentration on time. (The minimum sum of square deviations in the phase
space of parameters is perhaps flat, with respect to ).

From Egs (14) or (15) is obvious that the parameter B is the mean velocity of
convective stream of indicating particles and thus also of liquid velocity which is
carrying these particles. It is possible to expect that with increasing rotational speed
of impeller this velocity will increase. From the second equation (29) there results
that also the dimensionless velocity g increases with increasing speed of mixer rotation.

As has been found earlier'-3, the parameter ¢* in Eq. (14) or the dimensionless
parameter y, defined by the third of relations (25) can be considered to be the dimen-
sional or dimensionless turbulent diffusivity. As intensity of turbulence increase with
increasing speed of rotation it is possible to expect also the increase in value of
parameter y with this operating condition. As is obvious from Fig. 3 both these
conclusions were experimentally verified, while the rise in parameters ¢ and 7y is
roughly linear with the rotational speed of impeller.

As concerns the boundary conditions (7) for solution of Egs (16) it is necessary
to mention that physical sense of these boundary condition is more illustrative and
simpler than in the usual case of “‘unidimensional” diffusion described in general by
relation®
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d¢(x, 1) + du(x, ) p(x; 1) _ 10%*(x, ) (x5 1) _ 0
ot ox 2 ox?

(30)

in which ¢(x; f) denotes probability density of particle location, u(x, t) drift velocity
and ¢*(x, 1) diffusion coefficient. Boundary conditions for reflecting boundary of the
interval always include the relation do?(x, ) ¢(z, t)/0x; while at explanation of their
physical sense it is necessary to admit that particle hits the boundary with infinitely
large velocity. Elastic reflection of indicating particle, described by Eqs (11) and (12),
enables to consider finite velocities and the corresponding distribution of velocities
is then described by condition (7). It is also worth mentioning that Eq. (21) can be
also written with regard to the remark made next to Eq. (20), i.e. that there exist
(also with regard to Eq. (8)) two relations

or(x;1) = E [ f : (%, 03 1) dv: (31)

and

¢n(x;1)=E ”j: I (x,050) dv:

which are solutions of the ‘‘unidimensional” differential equation with diffusion
coefficient which is a function of time

200050 4 p20n 050 & (1 arp (-a) T 20, (3

(compare Eq. (34) in the previous paper?).

The corresponding boundary conditions are given by relations

fw [’* - 8;2(1 — exp (—at)) i] oF =
= — n:Z: [ -B - %:(1 — exp (—at)) %] or, (33)

for x 1 0 or x | L, which also describe reflection of the indicating particle in point,
x =0and x = L.

This approach is thus suitable for description of diffusion processes in a limited
interval.
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APPENDIX

Solution of Kolmogorov Equations

It has been proved® that the fundamental solution of Kolmogorov diffusion equations is a func-
tion proportional to the probability density of the multiple distribution at the assumption that
coefficients with first derivatives are linear functions of “‘spatial”’ variables and coefficients with
second derivatives are constants. Parame‘ers of this function are then function of time and they
can be found by solution of the system of ordinary differential equations. In the case of Eq. (16)
they hold for expected values of variables x and ¢ with dots above letters for time derivatives

£t =0 (34)

Initial conditions to these relations are determined by Egs (/5) and ({7)

x(0) = 0 (35)
v¥(0) = +8.

Solution of these equations are obviously relations
xt = +pt (36)
vt = +8.

For second moments of variables x and v it is possible to write this system as
hyx = 2hy = 0 (37)
h, + ah, —h, =0
hy, + 2ah,, = 20e?.
Initial conditions are again determined by relations (/6) and (17)
ho(0) = ho(0) = 0; hy, = 2. (38)

By solving this system the last threec terms of the system (/9) are obtained.

For particular solution f,:t it is necessary to modify the first initial condition (35) so that the
expected position of the particle in moments t = 2nL/B is equal to zero and in moments (2n 4
-+ 1) L/B is equal to L, here n is the integer.

The proposed procedure can be applied for stationary solution of Egs (/4); in last relations (34)
and (37) zero time derivatives are considered so that relations are obtained vE = +8; b,y = &2
which are parameters of Eq. (15).

The authors like to thank Miss J. Poskubkovad for carefully performed computations.
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LIST OF SYMBOLS

coefficient in Eq. (/3) ms™2

coefficient in Eq. (13) ms™3/2

probability density

function characterising nonrandom force ms~
second central moment

function characterising random force ms~
summation index

correlation coefficient

time s

drift velocity ms™~
velocity ms™!
coordinate of the point m

operator of expected value

length of mixer m

concentration of indicating particles kgm™3
variance of dimensionless concentration
random particle velocity ms™!

2

3/2

1

Var variance operator

S 9 Q

LRSI S R

Wiener process s'/2

random location of particle m

dimensionless concentration

coefficient in Eq. (13) s~ 1

parameter of Eq. (/4), mean velocity of indicating particles ms™
parameter of the model defined by Eq. (29)

Dirac function

parameter of Eq. (/4), variance of velocities of indicating particles ms™
probability density

dimensionless linear coordinate

parameter of model Eq. (29)

diffusion coefficient m?s~!

time s

dimensionless time

1
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